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On Polynomial Factorization Over Finite Fields 

By Hiroshi Gunji and Dennis Arnon 

Abstract. Let f(x) be a polynomial over a finite field F. An algorithm for determining the 
degrees of the factors of f(x) is presented. As in the Berlekamp algorithm (1968) for 
determining the factors of f(x), the Frobenius endomorphism on F[x]/(f(x)) plays a central 
role. Little-known theorems of Schwarz (1956) and Cesaro (1888) provide the basis for the 
algorithm we present. New and stream-lined proofs of both theorems are provided. 

1. Introduction. There are a number of computational problems in which one 
wants the degrees of the factors of a polynomial over a finite field without needing 
the factors themselves. Factorization of polynomials over the rationals Q provides 
one example. In recent algorithms for constructing the factors of g(x) in Q[x], one 
must essentially guess their degrees, check this guess, and repeat until a correct 
guess is made; see e.g. Musser [4]. For almost all primes p, the degrees of the 
factors of g(x) modp restrict the possible degrees of factors of g(x). Musser has 
exploited knowledge of these mod p factor degrees for several primes p to signifi- 
cantly improve the guessing process. A second example of where only factor 
degrees of a polynomial over a finite field are needed is the technique, due to van 
der Waerden (see [7, Section 8.10]), of determining subgroups of the Galois group of 
g(x) in Q[x] from knowledge of its modp factor degrees for several primes p. 
Zimmer [9, p. 5] mentions additional examples. 

Let F be a given finite field with q elements, where q = pS for some prime p and 
some s > 1. Letf(x) be a given monic polynomial of degree n > 1 in F[x]. Let 

(1.1) f(x) = fl(x)e f2(x)e2 . . . fr(x)E r > 1, 

be a complete factorization of f. That is, each fk has degree > 1 and is irreducible 
over F; if k, # k2, then fk, is not an associate of fk2, and each ek is a positive 
integer. Define aj, 1 < j < n, to be the number of fk's of degree j. We have 
0 <aj < r for eachj, and 

n 

E a>= r. 
j=1 

Thus, if we can compute a1, I 2' ... , a,n given f, we know the degrees of the 
(distinct) factors of f. 

Let ?T denote the Frobenius mapping on the F-algebra R = F[x]/(f(x)), i.e., for 
any h + (f) in R, ?T(h + (f)) = hq + (f). It is easily verified that ?T is an endomor- 
phism of R. For 1 < i < n, define vi to be the dimension of the null space of the 
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endomorphism ?T' - I of R, where I is the identity on R. v1 plays a crucial role in 
Berlekamp's algorithm [1] for constructing the factors of a polynomial in F[x]. 

Let A be the n X n matrix I1AijIl, where Aij = (i,j), the greatest common divisor 
of i and j. Let a and v denote the column vectors (a,, . . . , an)T and (v,, . . ., ,jT. 
Schwarz [5] proved 

Au = P. 
Smith's formula [6] states that 

n 

Determinant(A) = I (i), 
i=l1 

where 9p is the Euler totient function. Hence, as Schwarz observed, A is invertible 
and a is uniquely determined by P. As we will see in Section 5, v can be computed 
fromf(x). 

Schwarz did not discuss the question of obtaining an explicit formula for A-' (as 
a function of n). Clearly, it would be preferable to use such a formula to compute a 
from v rather than using, say, gaussian elimination. As Carlitz [3] points out, a 
formula for A-l is implicit in an 1888 result of Ces'aro. We give our own rather 
succinct derivation of the formula in the present paper. We note that Dickson [8] 
essentially stated the relation o = A -v and the formula for A-', without proof and 
without reference to Schwarz or Ces'aro. It seems likely, however, that he assumed 
f(x) to be a separable polynomial (i.e. el = e2 = . = e, = 1 in (1.1)). 

Thus, we have a two-step algorithm for determining the degrees of the factors of 
f(x): first we compute the length n vector P, then multiply v by A'-, an n X n 

matrix of rational numbers. We begin this paper with a new proof, in Sections 2 
and 3, that Aa = v whetherf(x) is separable or not (we proceed by considering first 
the separable case). In Section 4 we derive the formula for A-l and note that the 
derivation yields Smith's formula as a by-product. In Section 5 we give an example 
of the algorithm. 

2. The Separable Case. We assume in this section that the given polynomial f(x) 
is separable, i.e. 

f(x) = fA(x)f2(x) ... r(X), r> 1, 

where the fk's are irreducible nonassociate polynomials of positive degree. Where 
nk > 1 is the degree of fk, we have n = r nk We write the definition of v,, 
1 < i < n, in the form 

Pi = dimension(kernel(,T' - I)) = dim ker(rT' - I), 

?T the Frobenius on R. By the Chinese Remainder Theorem we have an isomor- 
phism of F-algebras 

F[_x] _F[x] F[x] F[x] 
R ((x)) (f1(x)) (A2(X)) (fr(X)) 

For 1 < k < r, let Rk denote F[x]/(fk(x)), 7Uk the Frobenius on Rk, and Ik the 
identity on Rk. 7k' in other words, is the map Trk(h + (fk)) = h" + (fk) for any 
h + (fk) in Rk. Then, for any i, 1 < i < n, we have 
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pi = E [dim ker(v,' - Ik)]. 
k=1I 

Since each fk is irreducible, Rk - GF(qfk) for each k. Noting that h + (fk) is in the 
kernel of k - Ik if and only if hq -h is divisible byfk, we have, for each k, 

ker(k - Ik) GF(q') n GF(qnk) GF(q(i'nk)). 

Hence, dim ker(k - Ik) = (i, nk). We have thus proved 

THEOREM 2.1. If f(x) is a separable polynomial, then for any i, 1 < i < n, 
r 

pi = E (i, nk). 
k=1 

Recalling that, for 1 < j < n, aj > 0 is the number of nk's, 1 < k < r, equal toj, 
we have immediately 

COROLLARY 2. 1. If f(x) is a separable polynomial, then, for any i, 1 < i < n 

n 

i= E (i,j)A. 
j=l 

Thus, using notation from Section 1, we have 

COROLLARY 2.2. If f(x) is a separable polynomial, then Y = Au. 

We also note the following 

COROLLARY 2.3. If f(x) is a separable polynomial, then Pi is the number of 
nonassociate irreducible factors of f(x). In particular, if f(x) is separable, it is 
irreducible if and only if PIz = 1. 

3. The General Case. We now drop the assumption that f(x) is separable, i.e., in 
the complete factorization of f(x) as given in (1.1), we do not assume that each ek is 
one. Letting nk again denote the degree of fk, we have now n = -I eknk. The 
Chinese Remainder Theorem yields the following isomorphism of F-algebras 

R =F[x] _ F[ x] F[x] 

For 1 < k < r, let Rk denote F[x]/(fk(x)ek), '7k the Frobenius on Rk, and Ik the 
identity on Rk. For any i, 1 < i < n, we have 

vi = dim ker(q7 -I) = E [dim ker(Tk - k)]. 
k= 1 

Let Rk denote F[xI/(fk(x)), -k the Frobenius on Rk, and Ik the identity on Rk. If 
we can show for all k and i, 1 < k < r and 1 < i < n, that 

(3.1) dim ker(7Tk - Ik) = dim ker(7k - Ik 

then the results of Section 2 will carry over to the present, more general, situation. 
We establish the validity of (3.1) with three lemmas. 

For the lemmas (and only for the lemmas) we will assume given some irreducible 
t(x) of degree m > 1 in F[xJ, and a positive integer e > 1. We will let S denote 
F[x]/(t(x)e) and S denote F[x]/(t(x)). Again only in the lemmas, 7T will denote the 
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Frobenius on S, T the Frobenius on S, I the identity on S, and I the identity on S. 
Elements of S and S are cosets h(x) + (t(x)e) and h(x) + (t(x)), respectively, for 
h(x) in F[x]. The map I: h + (te) h + (t) is an F-algebra homomorphism of S 
onto S. 

LEMMA 3.1. ' o 7T = .T o 'P 

Proof. For any h + (te) in S: 

' o ?T(h + (te)) = *(hq + (te)) = hq + (t). 

Also, 

7T o 'P(h + (te)) = iT(h + (t)) = hq + (t). 

Q.E.D. 

COROLLARY 3.1. For any i, 1 < i < n, ' o (Tr' - I) = (7r - I) o '. 

Let K' and K" denote ker(T' - I) and ker(r' - I), respectively. Then the 
inclusion '(K') c K' is a direct consequence of Corollary 3.1. We shall now prove 

LEMMA 3.2. For any i, 1 < i < n, '(K') = K'. 

Proof. It is enough to show that KI c '(K'). Let h + (t) be an arbitrary element 
of K', and let w in F[xJ be defined by 

hq - h = wt. 

If wt is divisible by te, then h + (te) is in K' and '(h + (te)) = h + (t). Suppose 
wt is not divisible by te. Let 

h + E (wt)qik 

k=O 

where c > 0 is the largest integer such that (wt)qc is not divisible by te. Clearly 
'(h + (te)) = h + (t), and a direct calculation shows that 

q'W- _ (Wt)qlc) _ 0 (mod(te)), 

i.e. h + (te) is in K'. Q.E.D. 
Finally we have 

LEMMA 3.3. For any i, 1 < i < n, ' restricted to K' is injective. 

Proof. Suppose for some h & F[x] that h + (te) is a nonzero element of K', but 
h + (t) is zero in S. Write h = vtC, where 0 < c < e and tc is the largest power of t 
dividing h, i.e. v E F[xl is not divisible by t. Since h + (te) is in K', in F[xI we 
have 

h q'-h = Ute, 

for some u in F[x]. Hence 

h h '- Ut e 

i.e. 

Vtc = (tc)q' Ute 

i.e. 

q-(q-I + Ut-c 
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But since c > 1 and e - c > 1, we have inferred that v is divisible by t, a 
contradiction. Q.E.D. 

From Lemmas 3.2 and 3.3 we have 

COROLLARY 3.2. For any i, 1 < i < n, ker(T' - I) and ker(#i - I) are isomorphic 
as vector spaces. 

Returning to the polynomial f(x) and the notation we had prior to the lemmas, 
we can now state (3.1) as a theorem: 

THEOREM3.1. For any kand any i, 1 < k < rand 1 < i < n, 

dim ker(Tk' - Ik) = dim ker(#,k - Ik) 

Analogues to the corollaries of Section 2, minus the separability hypothesis, 
follow immediately: 

COROLLARY 3.3. For any i, 1 < i < n, vi = 'k= (i, nk). 

COROLLARY 3.4. For any i, 1 < i < n, Vi = I> (i, j)aj. 

COROLLARY 3.5. v = Au. 

COROLLARY 3.6. P1 is the number of nonassociate irreducible factors of f(x). 

(Note: the irreducibility criterion of Corollary 2.3 is only valid when f is 
separable.) 

Remark. Corollary 3.6 was proved as a theorem by Butler [2]. It is fundamental 
to the Berlekamp algorithm. 

4. The Formula for A-'. The matrices in this section will be m x m, where m is 
any given positive integer. We view the standard Mobius function yt as being 
defined on the positive rational numbers; y(c) = 0 for nonintegral c. We define 
matrices M, S, A and D: 

= 11 i si 
{ 1 j divides i, 

= j j does not divide i. 

A1j = (i,j), D = diagonal(9p(1), ... ., (m)). 

The reader can easily verify the following: 

LEMMA 4.1. (1) MS = I, where I is the m x m identity matrix. 
(2) Determinant(M) = Determinant(S) = 1. 
(3) Determinant(D) = H1=' (p(i). 

Remark. Part (1) of Lemma 4.1 is a "vector" form of the Mobius inversion 
formula. That is, if g and h are any arithmetical functions, if 

g* = (g(1), g(2), . .. , g(m))T and h* = (h(1), h(2), . . . , h(m))T, 

then (1) says that g* = Sh* if and only if h* = Mg*, which is just a simultaneous 
statement of the Mobius formula for the values g(1), . .. , g(m), h(1), . .. , h(m) of 

g and h. 
Now let g and h be any two arithmetical functions such that g(k) = Edlk h(d), 

for all k. Let G and H be the following matrices: 
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Gij = g((i, j)), H = diagonal(h(l), ... , h(m)). 

THEOREM 4.1. G = SHS T. 

Proof. For every i, j, 1 < i, j < m, 

G,j= g((i,j)) = E h(d) 
dj(i,j) 

m 

- E h(d) = E Sikh(k)Sjk = (SHST)ij. 
dlianddlj k=1 

Q.E.D. 
As Carlitz noted, a different but equivalent version of this theorem was proved 

by Cesaro in 1888. 

COROLLARY 4. 1. A = SDS T. 

Proof. Set g(k) = k and h(k) = c(k) in Theorem 4.1. 

COROLLARY 4.2. A-1 = MTD 'M. Thus, the ijth element of A-' is 

(4.1) (A-1)i = k-i 

COROLLARY 4.3 (SMITH's FORMULA). Determinant(A) = Hm I qp(i). 

5. An Example. We now illustrate how the results of Sections 2, 3, and 4 provide 
an algorithm for computing the degrees of the irreducible factors of a given f(x). 
One first constructs a matrix for the Frobenius on R = F[x]/(f(x)). One then uses 
this matrix to obtain Pj, V2,. . . , V,n and finally obtains a as A -'v. A-1 is assumed to 
have been precomputed by formula (4.1) of Section 4. 

We choose q = 2 and let F2 denote the finite field with two elements. We let 
f(x) E F2[x] be x8 - x = x - x; thus n =8. It is well known that f(x) is the 
product of all monic polynomials in F2[x] irreducible over F2 and of degree 
dividing 3. We assume the standard basis 1, x, x2, .. ., x7 for F2[x]/(f(x)), so the 
ith row, 1 < i < 8, of the matrix of 7T with respect to this basis, is xi I)q modf = 

x2i-2 modf. We obtain the following 8 x 8 matrix: 

1 0 0 0 0 0 0 0 

O 0 1 0 0 0 0 0 
0 0 O 0 1 0 0 0 
0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 
0 O 0 1 0 0 0 0 
0 0 0 O 0 1 0 0 
0 0 0 0 0 0 0 1 

Where I is the 8 x 8 identity matrix, we compute vi, i = 1, 2, . . ., 8, as the 
dimension of the null space of the matrix 7T' - I. We obtain 

ill 2 3 4 5 6 7 8 

Pi' 4 4 8 4 4 8 4 4 
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Using formula (4.1), we obtain the 8 x 8 matrix A-: 

41 -3 - ? 1 1 -1 ? 

3 2 1 0 0 
I 

0 0 
2 2 2 2 

-1 2 1 ?0 0 2 0 0 
2 ~~~~~2 

o -1 3 -1 
2 4 4 

-41 0 0 0 4 0 0 0 

1 -21 -1 1 
- I - I 

0 0 - 0 0 
22 2 

0 0 0 0 0 - 0 
6 6 

O O O ii 0 0 0 
4 

A -'z yields the vector 

a = (2, 0, 2, 0, 0, 0, 0, ) . 

Thus, f(x) has two irreducible factors of degree one, and two irreducible factors of 
degree three. Since the monic irreducible polynomials of degree one and three over 
F2 are x, x + 1, x3 + x + 1, and x3 + X2 + 1, this is just what was expected. 
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